Skip Ribbon Commands
Skip to main content
NUST institute of Civil Engineering (NICE)
MS and PhD Geotechnical Engineering

The course focuses on strengthening students’ knowledge in geotechnical engineering, exposing them to issues related to engineering geology, geotechnic foundation engineering, geological and rock engineering, hydrology, soil structure and pavement design/ analysis/ rehabilitation.

Why join this program

Geotechnical Engineering provides flexibility, broad subject coverage, high quality delivery and excellent job prospects on graduation. The course allows development of important technical aspects associated with Geotechnical Engineering. It provides the students with comprehensive and diverse understanding of Geotechnical Engineering which will allow the students to develop their careers. It is not only successful in providing essential technical aspects in the subject, but also allows a sound practical application of the skills learnt.


Course Title:          Rock Mechanics-I
Course Code:        CE-826
Credit Hours:         3-0
Pre Requisites:     Graduate or 04 years

Course Objectives:    Course focuses on the understanding of rock mechanics with emphasis on geological composition its strength properties and study of rock for foundation and stability point of view.

Detailed Contents:
a.    Introduction

b.    Geologic Exploration

    (1)    Introduction.
    (2)    Method of Coring.
    (3)    Core Logging.
    (4)    Indexing.

c.    Index Test

    (1)    Compressive Strength.
    (2)    Tensile Strength.
    (3)    Density, Porosity.
    (4)    Durability.
    (5)    Hardness Rebound and Abrasion.

d.    Intact Rock Classification

    (1)    Hardness Classification.
    (2)    Deere & Miller.
    (3)    ISRM.

e.    Planes of Weakness in Rock

    (1)    Effect on Strength, Compressibility & Hydraulic Conductivity.
    (2)    Rock Mass Classification:
        (a)    Terzaghi.
        (b)    Lauffer-Pacher.
        (c)    RQD.
        (d)    RSR.
        (e)    RMR.
        (f)    Q-System.

f.    Stress Strain - Strength Properties

    (1)    Failure Theories.
    (2)    Triaxial Properties.
    (3)    Three Dimensional State of Stress.

g.    Properties of Soft Rock-Creep

h.    References

        (1)    Goodman R. E (1989), Introduction to Rock Mechanics, John Willey.
        (2)    Hoek, E and Brown, E.T (1990), Underground Excavations in Rock, Spon Press.
Name and Qualifications of the faculty conducting the course:     Dr. S. Muhammad Jamil, PhD

Course Title:          Slope Stability

Course Code:        CE-823
Credit Hours:         3-0
Pre Requisites:     Graduate or 04 years

Course Objectives:    The course aims at rendering an in-depth knowledge of rock mechanics and understanding of rock strength.  It deals with stability measures and enhancement of rock strength by exposing students to various means/measures to do this.  Also includes tunneling design.

Detailed Contents:

    a.     Rock Excavation, Slopes and Review of Shear Strength of Rock Joints

    b.    Effect of Shear Strength on Stability of Rocks
    c.    Slope Stability Analysis
   d.    Stabilization and Monitoring of Slopes

    e.    Design and Construction of Slopes and Cuts

    f.    Rock Properties and Tunnel Behavior

    g.    Observational Methods of Design

    h.    References
(1)    Goodman R E (1989), Introduction to Rock  Mechanics, John Willey.
(2)    Hoek, E (1990), Underground  Excavations in Rock, Spon Pess.
(3)    Hoek, E,(1981), Rock Slope Engineering, The Institute of Mining and Metallurgy, Spon Press.
(4)    Legget, R.F and Hatheway, A.W. (1988), Geology and Engineering, McGraw Hill, Book Company, New York, USA.
Name and Qualifications of the faculty conducting the course:    Dr. Kamran Akhtar, PhD

Course Title:                Advance Geotechnical Design
Course Code:              CE-828
Credit Hours:               3-0
Pre Requisites:           Graduate or 04 years
Course Objectives:    To equip the students with the design of shallow and deep foundations. Student should be able to understand the design methodology and limiting conditions.

Detailed Contents:   

    a.    Bearing Capacity of Foundation

    b.    Foundation Settlement

    c.    Factors to Consider in Foundation Design

    d.    Spreading Footing Design

    e.    Special Footing & Beams on Elastic Foundations

    f.    Single Pile Capacity

    g.    Pile Foundation Groups

    h.    Drilled Piers or Caissons

    i.    References

        (1) DAS, B.M. (1995), Principles of Foundation Engineering, 3rd Edition, PWS Publishing Company, California.
        (2) Bowles J E, (1992), Foundation Analysis & Design, McGraw Hill, New York.
        (3) Hsai-Yang Fang, (1991), Foundation Engineering Handbook, Van Nostrand Reinhold, NY.
        (4) Coduto, D.P. (2001), Foundation Engineering; Principles and Practices, Prentice Hall.

Name and Qualifications of the faculty conducting the course:     Dr. Abdul Qudoos Khan, PhD


Course Title:         Pavement Design and Analysis
Course Code:       CE-801    (Course being run by NIT)
Credit Hours:        3-0
Pre Requisites:    Graduate or 4 years

Course Objectives:    To educate students in the design of pavements both Rigid & Flexible. The course focuses on principles of design, design procedures along with traffic data analysis and its effects.

Detailed Contents:   
   a.    Introduction to Structural Design of Pavements

        (1)    Load Carrying Concept of Various Pavements Types.
        (2)    Stress/Strain Based Pavements Design Concept.
        (3)    Empirical and Mechanistic-Empirical Design Approaches.
        (4)    Structural Design Input Parameters.

    b.    Characterization of Roadbed Soils and Materiel Properties

        (1)    Strength and Deformation Characterization.
        (2)    Modeling and Behavior under Dynamic Cyclic Loads.
        (3)    Stress Dependent Behavior Models.
        (4)    Fatigue and Rutting Models.

    c.    Traffic Data Analysis

       (1)    Tyre, Contact Pressures and Tyre Imprint Areas.
       (2)    Pavement Response to various Wheel/Axle Loads and Configurations.
       (3)    Concepts of Load Equivalency Factors (LEF).
       (4)    Estimation of Design Traffic and Forecasting Techniques.

    d.    Environmental and Climatic Consideration.

       (1)    Effects of Environmental Factors on the Pavement Design Process and the Pavement Performance.
       (2)    Minimization of Detrimental Effects of Environmental Factors.
       (3)    Environmental Data Needed in the Structural Design of Pavements.

    e.    Drainage

        (1)    Moisture related pavement distresses and their mechanisms
        (2)    Influence of drainage on the structural design of pavements

    f.    Fundamental Principles of Flexible Pavement Design

         (1)    Stresses in Flexible Pavements (Boussinesq Theory, Layered System Concept, Finite Element Procedure),  Computer Analysis.
         (2)    Critical Stresses and Strains and Design Principles to Minimize Distresses.
         (3)    Sensitivity of Flexible Pavement Response to Layer Thickness and Rations, Modulus and Rations, Total Load, Tyre Pressure and Imprint Area Values.   

g.    Structural Design and Analysis Procedure for Flexible Pavements
        (1)    AASHTO (Empirical Procedure), Computer Analysis DNPS86.
        (2)    Asphalt Institute Method (Mechanistic-Empirical Procedure).
        (3)    MICH-PAVE (A Finite Element Method for Structural Design & Analysis).
        (4)    Comparison of Assumptions, Strengths, Weaknesses, Limitations and Applications of the Above Procedures.
        (5)    FAA Method for Airports, Computer Analysis.
    h.    Fundamental Principles of Rigid pavement Design
        (1)    Distresses in Rigid Pavements (Westergaard Theory, Non Load Related Stresses, Combined Stresses), Computer Analysis WESTY.
        (2)    Critical Loading Conditions and Design Principles to Minimize Distresses.
        (3)    Sensitivity of Rigid Pavement Responses to Modulus of Subgrade. Reaction, Tyre Pressure, Total Load and Wheel Configuration.

    j.    Structural Design Procedure for Rigid Pavements
        (1)    AASHTO (Empirical Procedure), Computer Analysis DNPS86
        (2)    FAA (Mechanistic-Empirical Procedure, Computer Analysis PCA-PAVE).
        (3)    Comparison of Assumption, Strengths, Weaknesses, Limitations and Applications of the Above Procedures.
        (4)    FAA Method for Airports, Computer Analysis.

    k.    Practicals

        (1)    Plate Load Test.
        (2)    Triaxial Test.

    l.    References
(1)    Highway Pavements    Volume 1 and 2 prepared for U.S. Department of Transportation, Federal Highway Administration, National Highway Institute, prepared by Michigan State University, April 19932.
(2)    Principles of Pavement Design Yoder, E.J., and M.W., Witzcak, New York, John Wiley and Sons, 1975.
(3)    Pavement Analysis    Bu Ullidtz, Elsevier Publishers, 1987.
(4)    ASSHTO guide for Design of Pavement Structures    Washington, D.C., 1986.
(5)    The Asphalt Institute Thickness Design - Asphalt Pavements for Highway and Streets Manual Series No.1 (MS-1), September, 1981.
(6)    Thickness Design for Concrete Highway and Street pavements Portland Cement Association, 1984.
Name and Qualifications of the faculty conducting the course:    Dr. Arshad Hussain, PhD

Course Title:           Soil & Site Improvement
Course Code:         CE-821   
Credit Hours:          3-0
Pre Requisites:      Graduate or 4 years

Course Objectives:  The subject provides an insight into the soil mineralogy its chemical composition and micro structure in order to understand the mechanism of improving the soil and site conditions.  The course also equips the students with various soil improvements techniques and methods.

Detailed Contents:

    a.    Basic Engineering Properties of Soil

    b.    Compaction

    c.    Admixtures

    d.    Reinforced Earth Technology

    e.    Drainage and Consolidation

    f.     Soil Erosion: Prevention and Control

    g.    References
(1)    Bell, F.G (1987), Ground Engineer’s Reference Book, Butterworths, London.
(2)    Bowles, J.E., (1988), Foundation Analysis and Design, Chapter 2, McGraw Hill, New York.
(3)    Transportation Research Board, State of the Art: Lime Stabilization, Circular 180, Sep 1976.
(4)    Holtz, R.D., Kovacs, W.D, (1981), An Introduction to Geotechnical Engineering, Chapters 4 and 5, Prentice Hall, New Jersey.
(5)    Leonard, G.A., (1962), Foundation Engineering, Chapters 4 and 12, McGraw Hill, New York.
(6)    Mitchell, J.K., Foundation of Soil Behaviour, John Wiley and Sons, New York.
(7)    Lambe, T.M., and Whitman, R.V., (1969), Soil Mechanics, John Wiley and Sons, New York.
(8)    Hausmann, M.R. (1989), Engineering Principles of Ground Modification, McGraw Hills, USA.
Name and Qualifications of the faculty conducting the course:    Dr. Muhammad Kashif, PhD