Skip Ribbon Commands
Skip to main content
NUST institute of Civil Engineering (NICE)
MS and PhD Water Resource Engineering

The course enables students to appreciate the wide range of activities related to Water Resources Engineering and produce engineering experts with updated knowledge in the fields of Water Resources, Hydrology and Environmental Management.

Why join this programme?

Preservation and systematic regulation of water resources is the dire need of the present era. This course provides maximum job opportunities to students to work in different departments in the country.


Course Title:              Applied Hydrology
Course Code:            CE-872
Credit Hours:             3-0
Pre Requisites:         Hydrology and Water Management (CE-354)

Course Objective
    To equip the students with the knowledge of measurement, accuracy & evaluation of hydrological data, analysis of rainfall data, flood routing and application of hydrological techniques to practical problems.

Detailed Contents:
a.    Measurement, Accuracy and Hydrological Data Evaluation.
b.    Rainfall Data Analysis.
c.    Evaporation.
d.    Infiltration.
e.    Interception.
f.    Water Stages And Discharge Processing.
g.    Direct Discharge Measurement.
g.    Indirect Discharge Measurement By Means of a Current Meter.
h.    Float and Chemical Measurements.
i.    Discharge Rating Curve.
j.    Discharge Analysis.
k.    Rainfall-Runoff Relationship.
l.    Hydrograph Analysis and Synthesis.
m.    Unit Hydrograph & Its Derivation.
n.    S-Curve.
o.    Flood Hydrograph Estimation Using SCS Method.
p.    Hydrological Methods for Flood Routing.
q.    Application of Hydrological Techniques to Practical Problems.
r.    References
(1)    K. C. Patra, Hydrology and Water Resources Engineering, CRC Press, 2000.
(2)    Philip B. Bedient, Hydrology and Flood Plain Analysis, 3rd. Edition, Prentice-Hall, 2002.
(3)    Richard H. McCuen, Hydrologic Analysis and Design, 2nd Edition, Prentice-Hall, 1997.
(4)    L. Mays & Y.K. Tung, Hydrosystems Engineering & Management, McGraw-Hill Book Co., N.Y., 1992.
(5)    Vijay P. Singh, Hydrologic Systems: Rainfall-Runoff Modeling, Prentice Hall, 1989.
(6)    Richard H. McCuen, A Guide to Hydrologic Analysis Using SCS Methods, Prentice Hall, 1981.
(7)    R. L. Brass, Hydrology: An Introduction to hydrological science, Addison-Wesley Publishing Co., N.Y., 1990.
(8)    E. M. Shaw, Hydrology in Practice, 3rd Edition, Chapman & Hall, London, 1994.
 Name and Qualifications of the faculty conducting the course:    Dr. Hamza Farooq, PhD

Course Title:          Computational Hydraulics
Course Code:        CE-875
Credit Hours:         3-0
Pre Requisites:     Fluid Mechanics-I (CE-251) & II (CE-252)

Course Objective:    To equip the students with the knowledge of various computational methods to solve the practical hydraulics problems.

Detailed Contents:
    a.    The Description of Fluid Flow:
    b.    The Finite Difference Method:
    c.    Diffusion Problems.
    d.    Advection Diffusion Equation:
    e.    Descriptions of Unsteady Flow:
    f.    Solution methods for unsteady free-surface flows:
    g.    References

(1)    Maksimovic and M. Radojkovic (Ed.), Computational Modelling and Experimental Methods in M. B. Abbott & D. R. Basco, Computational Fluid Dynamics: An introduction for Engineers, Longman, 1989.

(2)    E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer-Verteg, 1997.

(3)    M. B. Abbott & D. R. Basco, Computational Fluid Dynamics, John Wiley & Sons, 1990.

(4)    Joel H. Ferziger and Milovan Peric, Computational Methods for Fluid Dynamics, Springer-Verteg, 1999.

(5)    Van Keer and Brebbia, Moving Boundaries IV: Computational Modeling of Free and Moving Boundary Problems, Computational Mechanics, 1997.

(6)    C. Hydraulics, E & FN Spon, 1989.

(7)    Khalid Mahmood & Yevjevich (Ed.), Unsteady Open Channel Flow, Water Resources Publications, Fort Collins.

(8)    M. H. Chaudhry, Applied Hydraulic Transients (2nd Edition), Ven Nostrend  Reinhold, N. Y., 1988.

Name and Qualifications of the faculty conducting the course:    Dr. Nawazish, PhD

Course Title:
              Sediment Transport
Course Code:            CE-876
Credit Hours:             3-0
Pre Requisites:         Fluid Mechanics-I (CE-251) & II (CE-252)

Course Objective
:    To equip the students with the knowledge of properties of water & sediment, incipient motion criteria & applications, transport mechanism of bed load, suspended load and total load.
Detailed Contents:
a.   Properties of Water and Sediment:
b.   Incipient Motion Criteria and Applications:
c.   Resistance to Flow and Bed Forms:
d.   Bed-Load Transport:
e.   Suspended Load Transport:
f.    Total Load Transport:
g.        References
i.    Ning Chien & Zhaohui Wan, Mechanics of Sediment Transport, ASCE Press, 1999.
ii.    J. Raudkivi, Loose Boundary Hydraulics (3rd Edition), Pergamon Press, 1990.
iii.    Van Rijn, Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas, Aqua Publication, 1993.
iv.    Venoni, Sedimentation Engineering, ASCE, 1977.
v.    K. G. Ranga Raju & R. J. Garde, Mechanics of Sediment Transportation and Alluvial Stream Problems (2nd Edition), Halsted Press, 1986.
vi.    W. H. Graf, Hydraulics of Sediment Transport, 1984.
Name and Qualifications of the faculty conducting the course:    Dr. Sajjad Haider, PhD


Course Title:          Water Resources, Economics, Planning and Management
Course Code:        CE-824
Credit Hours:         3-0
Pre Requisites:     Nil

Course Objective:    To provide students with an overview of the planning and management of water resources development, and to develop the economic principles and systems analysis tools to evaluate water resources projects.

Detailed Contents:
   a.    Water Resources Development, Planning and Management: An Introduction:-
   b.    The Economics of Water: An Introduction:-
   c.    The Economics of Water: Pricing and Regulation:-
   d.    Fundamental Principles of Engineering Economics:-
   e.    Evaluation of Water Resources Projects using Economic Criteria:-
    f.    Integrated River Basin Management:-
   g.    Optimisation Models for Planning and Operation:-

   h.        References
(1)    P. Cassimatis, A Concise Introduction to Engineering Economics. E & FN Spon, London, 1988.
(2)    D. A. Hay, and D. J. Morris, Industrial Economics and Organisation, 2nd edition, Oxford University Press, 1991.
(3)    L. D. James, and R. R. Lee, Economics of Water Resources Planning. McGraw-Hill, New York, 1971.
(4)    Alvin S. Goodman, Principles of Water Resources Planning, Prentice-Hall, 1984.
(5)    Maass et. al. Design of Water Resources Systems, MacMillan, 1968.
(6)    M. C. Chaturvedi, Water Resources Systems Planning and Management, Tata McGraw Hill Inc., New Delhi, 1997.
(7)    R. K. Linsley, J. B. Franzini, D. L. Freyberg, and G. Tchobanoglous, Water Resources Engineering, 4th edition. McGraw-Hill, New York, 1992.
(8)    D. P. Loucks, J. R. Stedinger and D. A. Haith, Water Resource Systems Planning and Analysis, Prentice-Hall Inc, Englewood Cliffs, N J, 1981.
(9)    L. W. Mays, and Y-K. Tung, Hydrosystems Engineering & Management. McGraw-Hill Inc., New York, 1992.
(10)    M. Parkin, and D. King, Economics, 2nd edition. Addison Wesley, 1995.
Name and Qualifications of the faculty conducting the course:    Dr. Hamza Farooq, PhD

Course Title:          Hydropower Engineering
Course Code:        CE-881
Credit Hours:         3-0
Pre Requisites:     Fluid Mechanics-I (CE-251) & II (CE-252)

Course Objectives:    To equip the students with the knowledge of determining hydropower potential, project layout & sizing, alternative project layout, selection of various components of hydropower plants and economical analysis
(1)    Comparison with other energy source
(2)    Stages of hydropower development
(3)    Selection criteria and approval
(4)    Components
(5)    Low head and high head
(6)    Low head developments; civil components; hydro-mechanical, components; electromechanical components and auxiliary equipment.
(7)    Project layout and sizing, low head and high head
(8)    Interdependence between layout, sizing and economics
(9)    Alternative project layout
(10)    Selection of project components
(11)    Level of detail of quantities and costs in different stages of Project development
(12)    Estimation of quantities & costs.
(a)    Optimisation and selection of the plant size.
b.    References
(1)    J. G. Brown, Hydro-Electric Engineering Practice (3 volumes)
(2)    Punmia, Irrigation & Water Power Engineering
(3)    Black, Power Plant Engineering
(4)    M. M. Dandekar, Water Power Engineering
(5)    ASCE Manuals and Reports on Engineering Practice No. 79, Steel Penstocks, ASCE Press, 1993
(6)    Brian K., Ph.D. Edwards, The Economics of Hydroelectric Power, Edward Elgar, 2003.
Name and Qualifications of the faculty conducting the course:    Engr Munawar Iqbal