Engineering Hydrology

Course Code	Credit Hours
CE-358	2-1

Course Description

This course introduces to the students the principles of hydrology, including the hydrological cycle and its impact on water resources availability, catchment water balance, measurement of catchment rainfall and its analysis, measurement of flow in natural rivers and channels.

Text Book:

1. Ghumman, A. R. (2006) Engineering Hydrology: An Introduction. Prosperous Pakistan Publishers, Lahore, Pakistan.

Reference Book:

- 1. Raghunath, H.M. (1988). Hydrology: Principles, Analysis & Design, Wiley Eastern, India.
- 2. Punmia, B.C. (1984). Irrigation & Water Power Engineering, Standard Publishers Distributors, New Dehli, India
- Sharma R.K. A Textbook of Water Power Engineering--Including Dams Engineering, Hydrology and Fluid Power Engineering - S. Chand and Company Ltd, New Delhi
- Linsley R K, Kohler M A, and Paulhus L H (1988) Hydrology For Engineers,
 McGraw Hill, Paperback 1988, ISBN
- 5. Bedient P B, Huber W C & Vieux B E (2012), Hydrology and Floodplain Analysis (5th Ed.), Pearson, 2007
- 6. Chow V T, Maidment D R and Mays L W (1988). Applied Hydrology, McGraw-Hill.

Prerequisites:

Nil

ASSESSMENT SYSTEM FOR THEORY

	Without Project (%)	With Project/Complex Engineering Problems (%)
Quizzes	15	10-15
Assignments	10	5-10
Mid Terms	25	25

Project	-	5-10
End Semester Exam	50	45-50

ASSESSMENT SYSTEM FOR LAB

Lab Work/ Psychomotor Assessment/ Lab Reports	70%
Lab Project/ Open Ended Lab Report/ Assignment/ Quiz	10%
Final Assesment/ Viva	20%

Teaching Plan

W IN T : " C :	
Week No	Topics/Learning Outcomes
1	<u>Introduction</u>
	Introduction to Engineering Hydrology
	Significance and Practical Uses
	Hydrological Cycle
	Water Balance Equation
2	Meteorology
	The Atmosphere and its Components
	Relative Humidity, Dew Point and Saturation Deficit
	Solar Radiation,
	Measurement of Air Temperature, Relative Humidity, Radiation, Sunshine,
	Atmospheric Pressure and Wind Velocity with Direction
3-5	Precipitation
	Factors necessary for the formation of Precipitation
	Types of Precipitation
	Forms of Precipitation
	Measurement
	Precipitation Data Interpretation
	Precipitation Data Analyses
	Computation of Average Rainfall over a Basin
6-7	Evaporation and Transpiration
	Factors affecting Evaporation.
	Measurement of Evaporation
	Evapotranspiration

8	<u>Streamflow</u>
	Water Stage and its Measurement
	Selection of Site for Stage Recorder
	Selection of Control and Metering Station
	Methods of Measurement of Streamflow
9	Mid Semester Exam
10-12	Runoff and Hydrograph
	Factors affecting Runoff.
	Estimating the Volume of Runoff
	Characteristics and Components of Hydrograph
	Hydrograph Separation
	Estimating the Volume of Direct Runoff
	Introduction to the concept of Unit Hydrograph
	S-curve Preparation
13-14	Streamflow Routing
	Introduction to Flood and its Causes
	Flood Frequency and Duration Analysis
	Design Flood and Return Period
	Reservoir Routing
	Channel Routing
	Introduction to Hydrological Modeling
	Flood Control
15	<u>Groundwater</u>
	Sources and Discharge of Groundwater
	Water Table and Artesian Aquifers
	Aquifer Characterization
	Pumping Test
	Tubewell Technology
16	Advanced Hydrology
	Remote Sensing
	Cloud Seeding
	Artificial Intelligence in Engineering Hydrology
17-18	End Semester Exam

Experiment	Description
No	
1	Measurement of Pan Evaporation
	Effect of Various Conditions of the Catchment Area and its Slope on the
	Rainfall-Runoff Relationships:
	a. Long duration storm $(t_r > t_c)$ on dry catchment
2-5	b. Short duration storm ($t_r < t_c$) on dry catchment
	c. Short duration storm ($t_r < t_c$) on saturated catchment
	d. Short duration storm ($t_r < t_c$) on impermeable catchment
	e. Effect of catchment slopes on runoff hydrograph
6	To study the rainfall-runoff characteristics of an urban catchment
7	Effect of Multiple Storms on the Runoff Hydrograph
8	OEL: Flood wave arrival time computation in lab flume
9	HEC-HMS: Getting Familiar with the Software
10	To draw a cone of depression for a single well in an unconfined aquifer
	pumping at a constant discharge
11	To draw cones of depression for multiple wells in an unconfined aquifer
	pumping at a constant discharge