Introduction to Big Data in biology

Semester No	Code	Credit Hours
7-8	BI -429	3 – 0

Course Description

This course focuses on understanding the statistical structure of large-scale biological datasets using ML algorithms. We cover the basics of ML and study their scalable versions for implementation on a distributed computing framework. We pursue distributed ML algorithms for matrix factorization, convex optimization, dimensional reduction, clustering, classification, graph analytics and deep learning. This course is project driven (3 to 4 small projects) with source material from genomic sciences, structural biology, drug discovery, systems modeling and biological imaging. Students are expected to design, implement and test their ML solutions in Apache Spark.

Text And Material

1. Relevant research papers currently in the field

Course Learning Outcomes:

After completing this course, a student will be able to:

- 1. Explain theories and methods relevant for handling and analysing massive datasets in life science.
- 2. Use modern systems for handling and analysis of massive datasets in life science:
- 3. Analyse properties of data-intensive life science applications and, suggest suitable strategies and architectures that meet application needs.

<u>Assessment System</u>

Quizzes	10-15%
Assignments	5-10%
Midterms	30-40%
ESE	40-50%

Week wise Lecture Plan:

Week	Description	Quizzes	Assignment
No	Description		

1	Introduction			
2 - 3	Methodology in life science applications	01	01	
4 -5	Methods for large-scale data management	02	01	
6 - 7	Introduction to Mapreduce, ApacheSpark			
8	Processing of life science data using			
8	Mapreduce			
9	MIDTERMS			
10	Batch system on computational clusters	03		
11	Reproducible data analysis using workflow			
11	systems			
	Analysis using software containers and		02	
12 -13	micro-service frameworks such as			
	Kubernetes			
14	Use of large-scale storage systems	04		
15	Use of virtualised environments.	04		
	Examples of applications in life science			
16 -17	include genomics, proteomics,		03	
	metabolomic & pharmaceutical			
	development			
18	END SEMESTER EXAMINATION			