COURSE CODE	GIE-204
COURSE NAME	PHOTOGRAMMETRY
CREDIT HOURS	Theory: 02
	Practical: 01
	Total: 03
CONTACT HOURS	Theory: 32
	Practical: 48
	Total: 80
PREREQUISITE	Nil

Mode of Teaching:

Instruction:	Two hours of lecture per week	67%
Practical:	Three hours of Lab work per week	33%

COURSE DESCRIPTION:

After this course, student will be able effectively plan and execute photogrammetric projects, and will be able to carry out photogrammetric analysis, such as measuring distances, areas and elevation to generate Ortho-photos and digital elevation model for use in different earth resource applications.

COURSE OBJECTIVES:

This course aims at providing basic knowledge of key elements analytical / digital Photogrammetry, photogrammetric procedure, techniques and instruments. It further includes description of techniques used for measurements from aerial photographs, and stereo-photogrammetry and its applications.

RELEVANT PROGRAM LEARNING OUTCOMES (PLOs):

The course is designed so that students will achieve the PLOs:

1	Engineering Knowledge:	\checkmark	7	Environment and	
I			1	Sustainability:	
2	Problem Analysis:		8	Ethics:	

3	Design/Development of Solutions:		9	Individual and Team Work:	
4	Investigation:	\checkmark	10	Communication:	
5	Modern Tool Usage:		11	Project Management:	
6	The Engineer and Society:		12	Lifelong Learning:	

COURSE LEARNING OUTCOMES:

Upon successful completion of the course, students will be able to:

No	CLO	Domain	Taxonomy Level	PLO
1	Comprehend the basic elements and	Cognitiv	2	1
	principles of photogrammetry	е		
2	Understand the use of aerial photographs to	Cognitiv	2	1
	generate maps and other survey data	е		
3	Practice stereoscopy to generate elevation	Psycho	3	4
	data from stereopairs.	motor		

TOPICS COVERED:

Theory:

Week	Topics
1	Introduction of photogrammetry: Overview, History
2	Principles of Photogrammetry-optics, Illuminance, Aperture, Photographic Films
3	Filters, Photogrammetric Cameras, and other imaging devices, Single lens camera, Frame aerial cameras
4-5	Metric camera, Digital imaging devices, Camera calibration, Imaging geometry, Image motion compensation
6	Image Measurements and Refinement: Coordinate Systems for measurements
7	Methods of measuring photo coordinates, Refinement of measured photo

	coordinates, Distortions and Corrections			
8	Types and Characteristics of Aerial Photographs: Vertical / Tilted Aerial			
Photographs, Oblique Aerial Photograph, Mosaics.				
9	Perspective Projections			
	Scale of photographs at flat and variable terrain			
10	Ground Coordinates from photographs			
11	Relief displacement and heights of objects, Error evaluation			
12	Stereoscopy and Parallax: Stereoscopic depth perception, Stereoscopes			
12	and their use, Parallax, and parallax measurement			
13	Vertical exaggeration in stereo viewing, Stereoscopic Plotting Instruments,			
15	DEM Generation, Ortho-photography/Ortho-image			
14	Modern programming tools for photogrammetry, Image processing in			
14	Python, OpenCV and Scikit-Learn			
	Ground Control for Aerial Photogrammetry- Number and location of photo			
15	control, Planning control survey, Methods for establishing control, Project			
	Planning -Aerial photography			
16	Stereo Imaging using Python			
17-18	ESE			

Practical:

No.	Topics
1	Familiarization with the frame and strips Aerial Photos (vertical, /oblique)
2	Analogue to digital image conversion (Scanning)
3	Measuring/Making Scales for vertical and oblique aerial photos
4	Geo-referencing/ rectification of aerial photos using maps
5	Geo-referencing of aerial photos using ortho- photos
6	Aerial photo mosaicking
7	Preparation of aerial photo maps
8	Object identification in aerial photos using Open CV
9	Familiarization with aerial imaging cameras (frame and digital)

10	Stereoscopic depth perception and height visualization using python and
	open CV
11	Aerial photo project planning
12	Preparation of aerial photo flight plan

TEXT AND MATERIAL:

Textbook (s):

a. Elements of Photogrammetry, (3rdEdition) by Paul R.Wolf& Bon A.Dewitt,2004, McGraw Hill, ISBN: 007-133689-9

References Material:

- a. Introduction to Modern Photography, (1st Edition) byEdward M. Mikhail, James
 S. Bathel, J. ChirsMcGlone, 2001, John Wiley and Sons Inc,ISBN: 9780471309246
- b. Manual of Remote Sensing (2ndEdition) in 2 volumes by Colwell, R.N, 1983, American Society of Photogrammetry.
- c. Digital Photogrammetry, Tony Schenk ,1999, Terra Science USA, ISBN: 0-9677635 0-7
- d. Manual of Photographic Interpretation (2nd Edition), Philipson, W.R 1997, American Society for Photogrammetry and Remote Sensing.

ASSESMENT SYSTEM:

1. CLOs Assessment

Cognitive	Psychomotor	Affective
Spreadsheet	Rubrics	-

2. Relative Grading

Theoretical/Instruction		67%
	Assignments 10%	

	Quizzes 10%		
	Mid Exams 30%		
	End Semester Exam 50%		
Practical Work			33%
Laboratory Work		70%	
	Laboratory Attendance 20%		
	Laboratory Report 20%		
	Laboratory Quiz 30%		
Viva/Quiz		30%	
Total			100%