Course Title: Nano-hybrid Systems

Semester: VII

Course Code: CH-462
Credit Hours: 3-0
Pre-requisite: Nil

- 1. <u>Course Objectives</u>. This course aims to provide students an advanced level understanding of nanochemistry of hybrid materials and composite systems developed on a nanoscale. The course also highlights key ways to manipulate their properties for utilization in diverse applications.
- 2. <u>Course Outcomes</u>. On successful completion of the course the student will have sound knowledge about nano-hybrid systems, their properties, modern nanocomposites andtheir applications.

3. <u>Course Outline</u>

- a. Nanochemistry:
 - (1) An overview of key concepts in Nanochemistry
 - (2) Classification of nanomaterials and surface modification techniques
 - (3) Nano-hybrid systems/nano-composites
 - (4) Classification of Organic-Inorganic hybrid nanomaterials.
 - (5) Synthesis techniques of organic-inorganic nano-hybrids.
 - (6) Mesoporous organic-inorganic hybrid nanomaterials.
 - (7) Optimization of mechanical, electrical and optical properties of organicinorganic nano-hybrid systems.
 - (8) Self-assembled nano-hybridssome key examples
 - (9) Grafting of polymer chains to nano-building blocks
 - (10) Bio-nanohybrids
 - (11) Magnetic nanohybrids and their applications
 - (12) Characterization techniques for nano-hybrid systems: some examples.
 - (13) Key examples of applied nano-hybrid functional materials and their applications
 - (14) Challenges in the fields of nano-hybrids: future perspective

4. <u>Text / Reference Books</u>

- a. Ludovico Cademartiri, Geoffrey 'Ozin, Concepts of Nanochemistry ,Wiley, 2009.
- b. T. Pradeep, et al., A Textbook of Nanoscience and Nanotechnology, Tata McGraw Hill Ltd (2012).
- c. Handouts