Course Code	Credit Hours
CE-288	1-1

Course Description

This course is designed to familiarise the students of Civil Engineering with the field of Geoinformatics which has at its core the technologies supporting the processes of acquiring, analysing and visualizing spatial data. This includes Field Surveying, Photogrammetry, Geographic Information System (GIS), Global Navigation Satellite System (GNSS) and Remote Sensing. However in this course the students will be only studying introductory topics on remote sensing, GIS and GNSS.

Text Book:

- 1. Kang-Tsung Chang'*Introduction to Geographic Information Systems*' McGrath Hill International Edition, Fourth Edition.
- 2. Thomas, M. Lillesand & Ralph W. Kiefer (2005), '*Remote Sensing and Image Interpretation*', 5th edition, John Wiley & Sons, Inc.
- 3. M Anji Reddy (2008) '*Remote Sensing and Geographical Information Systems*', 3rd edition, BS publications.
- 4. Leick, Alfred. '*GPS satellite surveying*', 3rd ed. JohnWiley & Sons, 2004.

Reference Book:

- Michael Kennedy (2002), The Global Positioning System and GIS: An Introduction 2nd Edition, Taylor & Frances, New York.
- 2. Elliott D. Kaplan, Christopher J. Hegarty, 'Understanding GPS:principles and applications', 2nd Edition.
- 3. Clarke, K.(2004) Getting Started with Geographic Information System, Prentices Hall, New York, Second Edition.

Prerequisites:

Nil.

	Without Project (%)	With Project/Complex Engineering Problems (%)
Quizzes	15	10-15
Assignments	10	5-10
Mid Terms	25	25

ASSESSMENT SYSTEM FOR THEORY

Project	-	5-10
End Semester Exam	50	45-50

ASSESSMENT SYSTEM FOR LAB

Lab Work/ Psychomotor Assessment/ Lab Reports	70%
Lab Project/ Open Ended Lab Report/ Assignment/ Quiz	10%
Final Assesment/ Viva	20%

Teaching Plan

Week No	Topics/Learning Outcomes
1	Introduction to remote sensing
2	Remote sensing basic process, electromagnetic radiations (EMRs) and
	spectrum, interaction of EMRs with atmosphere & Earth features
3	Satellite image resolutions
4	Remote sensing sensors and platforms
5-6	Visual image interpretation and classification
7	Introduction to GIS
8	Image map projections
9	Datum's and map projections
10	GIS data types
11-12	GIS/Spatial analysis
13	GIS data sources and preparations
14	Applications of GIS
15	Fundamentals and operations of Global Navigation Satellite System
	(GNSS)
16	Spatial data work flow and case studies
17-18	An End Semester Exam of 3 hour will be taken encompassing all the topics
	covered during the semester.

Practical

Experiment No	Description
1	Exploring the ERDAS Imagine
2	ERDAS Imagine basic functionalities
3	Stack, subset and mosaic of satellite imagery
4	Supervised classification of satellite image
5	Introduction to ArcCatalog and ArcMap
6	Map geo-referencing
7	Database querying
7	Creating features in ArcGIS

8	Editing features and attributes
9	Making maps from templates
10	Developing of GIS project