Course Title: Proteomics

Course Code: ABS-839

Course Objectives:

The main objective of this course is to offer basic to advance knowledge of proteomics and its applications.

Course Outcomes:

The information obtained during the course should be helpful to understand the current trends in proteome science and use of advance bioinformatics tools for protein functional and structural attributes. The students will learn how proteomics application in biological research can benefit in solving the complex biological and biochemical processes regardless of the type of organism which is the model for the research.

Course Contents:

Introduction to Proteomics
Basic of protein structures and folding
Proteomics classification
Proteomics Techniques
Protein Purification techniques
Protein Separation:
 SDS-PAGE and Two Dimensional Gel Electrophoresis
 Liquid Chromatography
Mass Spectrometry
Basics of Mass spectrometry
 Tandem MS/MS spectrometry
 MALDI-TOF and ESI-QTOF
Post-Translational modifications
Protein-Protein Interactions
Emerging Proteomics Technologies
Major online databases and their Practical use
o BLAST, FASTA. Clustal W. BOXSHADE, InterPro, UniProt, Pride, Pfam
 Interaction network databases
Similarity, homology, local and global sequence alignment
Scoring matrices (PAM, BLOSUM), Pairwise alignment, Dot
sequence alignment, docking
Applications of Proteomics
 Human Disease, Medicine and Drug Discovery, Agriculture and Industry

Recommended / Reference Books:

	Principles of Proteomics: Richard M. Twyman, Garland Science (Taylor and Francis
	Group), 2014, pp. 260.
	Proteomics: Introduction to methods and applications. Agnieszka Kraj and Jerzy Silberring
	2008. pp 376.
	Introducing Proteomics: From Concepts to Sample Separation, Mass Spectrometry and
	Data Analysis. Josip Lovric. 2011. pp 296.
	Proteomics in Practice: A Guide to Successful Experimental Design, 2nd, Completely
	Revised Edition. Reiner Westermeier, Tom Naven, Hans-Rudolf Hopker. 2008. pp 502.
•	Proteomics: Methods and Protocols. Reinders, Jörg, Sickmann, Albert. 2009. pp 431.
	Proteome Bioinformatics. Hubbard, Simon J., Jones, Andrew R. 2010. pp 393.