Geotechnical Engineering

Course Code	Credit Hours
CE- 311	3-1

Course Description

This course will focus on the geotechnical aspects of soil mechanics. The students taking the course will learn to apply the fundamental concepts of soil behavior to evaluation, selection, and design of earth retaining structures. In addition, the course will introduce the slope stability, soil improvement and earth and rockfill dam.

Text Book:

- 1. Das & Sobhan (2018). Principles of Geotechnical Engineering. 9th.
- 2. Das & Sivakugan (2018). Principles of foundation engineering. 9th.
- Design of Small Dams, (1987) United States Department of the interior, Bureau of Reclamation, A water Resource Technical Publication
- 4. Fell et al. (2005). Geotechnical engineering of dams. CRC press

Reference Book:

- 1. Murthy (2007). Advanced Foundation Engineering
- 2. Das (2014) Advanced Soil Mechanics. 4th.
- 3. Bowles (1997) Foundation Analysis and Designy.
- 4. Coduto (1999) Geotechnical Engineering, Principles and Practices.
- 5. Coduto (2001) Foundation Design Principles and Practices.
- 6. Liu & Evett (2013) Soil and Foundations

Prerequisites :

CE-222 Soil Mechanics.

ASSESSMENT SYSTEM FOR THEORY

	Without Project (%)	With Project/Complex Engineering Problems (%)
Quizzes	15	10-15
Assignments	10	5-10
Mid Terms	25	25
Project	-	5-10
End Semester Exam	50	45-50

ASSESSMENT SYSTEM FOR LAB

Lab Work/ Psychomotor Assessment/ Lab Reports	70%
Lab Project/ Open Ended Lab Report/ Assignment/ Quiz	10%
Final Assesment/ Viva	20%

<u>Teaching Plan</u>

Week No	Topics/Learning Outcomes
1-3	Stress Distribution in Soils
	 Total stress, effective stress, and pore water pressure
	 Vertical stresses induced due to structural loads
	Approximate methods.
	 Westergaard and Boussinesq's theories
	Pressure bulb
	 Stress at a point outside the loaded area
	 Newmark's influence charts
	Related numerical problems
2-4	Shear Strength
	 Concept and parameters of shear strength of soils
	Mohr Coulomb's failure envelope
	 shear strength of cohesive and non-cohesive soils
	 Factors affecting shear strength of soil and its applications in
	engineering.
	 Laboratory and field tests for determination of shear strength.
	Related numerical problems
6-8	Settlement Analysis
	 Definition, total settlement, and differential settlement
	Consolidation settlement
	 Elastic or immediate settlement
	 Primary consolidation settlements
	 Computation of elastic and consolidation settlement
	 Limits of allowable total and differential settlement
	Related numerical problems
9	Mid Semester Exam
Ŭ	

10-13	Lateral Earth Pressure
	 Definition, pressure at rest
	 Active and passive earth pressures
	 Coulomb's and Rankine's theories
	●Culmann's method
	Related numerical problems
13-14	Slope Stability Analysis
	 Types of slopes
	 Factors affecting slope instability and remedial measures
	 Types of failure modes
	Introduction to Limited Equilibrium Analysis
15	Earth and Rockfill Dams
	 Definition and types of dams
	 Components of a dam and their functions
	 Coffer dams and their types
	General design considerations and typical cross sections.
16	Soil Improvement
	 Basic principles and objectives of soil improvement
	 Mechanical and chemical stabilization of soil
	Different methods and their application to various soil types.
17-18	End Semester Exam
Practical	

Practical

Experiment No	Description
1	Direct shear test
2	Unconfined compression test
3	Triaxial compression test
4	SPT
5	Plate load test
6	Consolidation test
7	Electrical Resistivity