Deep Learning in Life Sciences

Semester No	Code	Credit Hours
7-8	BI – 430	3 – 0

Course Description

This course introduces foundations and state-of-the-art machine learning challenges in genomics and the life sciences. We introduce deep learning approaches to key problems, comparing and contrasting their power and limitations. We seek to enable students to evaluate various solutions to crucial problems we face in this rapidly developing field and to execute new enabling solutions that can have a large impact.

Text And Material

- 1. Dive Into Deep Learning, A. Zhang, Z.C. Lipton, M. Li, A. Smola.
- 2. Deep Learning" by Goodfellow, Bengio, and Courville

Course Learning Outcomes:

After completing this course, a student will be able to:

- Knowledgeable about deep learning methods in life sciences, especially in tasks like sequence and structure analysis and evolution, biological networks
- 2. Able to understand the key algorithms for the main tasks
- 3. Able to implement and apply the techniques to real-world datasets

Assessment System

Quizzes	10-15%
Assignments	5-10%
Midterms	30-40%
ESE	40-50%

Week wise Lecture Plan:

Week No	Description	Quizzes	Assignme nt
1	Overview of the Course/ ML Review		

	Neural Networks (CNN (review) &		
2	Deconvolutional Networks)	01	01
3	Neural Networks (RNN & GNN)		
4	Introduction to GANs		
5	Understanding Transformers	1	
	Interpretability, Dimensionality Reduction		
6	Relevance Propagation, Convolution	00	
	Arithmetic		02
7	Maximum entropy methods	02	
7	Discriminative Localisation		
8	Introduction of autoencoders	1	
9	MIDTERMS		
10 -11	Interpreting ML Models: visualise Filters,		00
10-11	Measure Gradients, Perturb inputs.	03	03
12	Tensor Flow Introduction	_	
	Deep Learning Problems and compute		
13	solutions;	. 04	
	Genomic regulatory codes		
	Deep Learning Problems and compute		
14	solutions;		
	Gene regulation - Single Cell RNA-seq		
	Deep Learning Problems and compute		
14	solutions;		
	Genetic Variations & Diseases		
	Graphs & Proteins		
15 - 16	 Protein structure prediction 		04
	 Functional classifications 		
	Biomedical imaging		
17	 Video Processing, structure 	05	
	determination		
18	END SEMESTER EXAMINATION		