Soil Mechanics

Course Code	Credit Hours
CE-217	2-1

Course Description

This course provides an elementary introduction to Soil Mechanics and provides the basic mechanics necessary for the detailed study of Geotechnical Engineering. This course aims to provide an understanding of the nature of soils as engineering materials; common soil classification schemes; the importance of water in the soil and the effects of water movement; and the stress-strain-strength response of soils.

Text Book:

- 1. Das & Sobhan (2018). Principles of Geotechnical Engineering. 9th.
- 2. Das (2009). Fundamentals of Geotechnical Engineering. 3rd
- 3. Whitlow (2001). Basic soil mechanics, 4th.

Reference Book:

- 1. Mitchell & Soga (2005). Fundamentals of soil behavior, 3rd.
- 2. Holtz & Kovac (1981) An Introduction to Geotechnical Engineering.
- 3. Whitlow (2001) Basic Soil Mechanic
- 4. Terzaghi (1943) Theoretical Soil Mechanics.

Prerequisites :

Nil.

	Without Project (%)	With Project/Complex Engineering Problems (%)
Quizzes	15	10-15
Assignments	10	5-10
Mid Terms	25	25
Project	-	5-10
End Semester Exam	50	45-50

ASSESSMENT SYSTEM FOR THEORY

ASSESSMENT SYSTEM FOR LAB

Lab Work/ Psychomotor Assessment/ Lab Reports	70%
Lab Project/ Open Ended Lab Report/ Assignment/ Quiz	10%

<u>Teaching Plan</u>

Week No	Topics/Learning Outcomes
1-2	Introduction
	 Introduction to soil mechanics and geotechnical engineering
	 Significance of geotechnical engineering
	 Soil formation, transportation, sorting, and deposition
	 Types of soil deposits and their properties
	Soil types, soil structure and clay minerals.
	Index and Physical Properties
3-5	 Basic physical and index properties of soil
0-0	Water content, void ratio, porosity, degree of saturation, air voids, unit
	weights, specific gravity etc.
	Phase relationships, and numerical examples
	Particle size and shapes, sieve Analysis, hydrometer Analysis.
	Consistency and various states of fine-grained soils
	Atterberg's limits
	Related numerical examples.
4-7	Soil Classification Systems
	Importance of soil classification
	Grain size distribution, gradation curves and interpretation
	Soil classification systems, textural classification system, AASHTO soil
	classification system, Unified soil classification system, and description
	of their subgroups. Related numerical examples
9	Mid Semester Exam
10-12	Compaction of soils
	Compaction of soils
	Fundamentals of compaction
	Standard and modified proctor compaction tests
	Moisture density relationship
	Compaction standards
	Factor effecting compaction

	• Field control and measurement of in situ density and field compaction
	Numerical examples and assignments
13-14	Dermachility and Secondre
13-14	Permeability and Seepage
	 Permeability and Seepage
	●Darcys's law
	 Factors affecting permeability
	 Laboratory and field determination of permeability
	Seepage forces
	 Introduction to flow net
	Related numerical examples
15-16	In-situ Stresses
	Stress condition in soil: effective and neutral stresses, stresses in saturates
	soils with upward and downward seepages
17-18	End Semester Exam

Practical

Experiment	Description
No	
1	To determine moisture content of soil in laboratory
2	To determine specific gravity of fine-grained soils in the laboratory
3	To determine particle size distribution of soils using sieve and hydrometer analyses.
4	To determine Atterberg's consistency limits of soils
5	To determine laboratory compaction characteristics of soils using standard and modified Proctor compaction test procedures
6	To determine in-place/in-situ/field density of soils
7	To determine permeability of soils using standard constant head and falling head permeability tests